

# **FAA CLEEN II Consortium**

Program Update – Public Plenary Roman Seele, JiEun Kirtley GE Aviation

#### GE is aligned with CLEEN goals

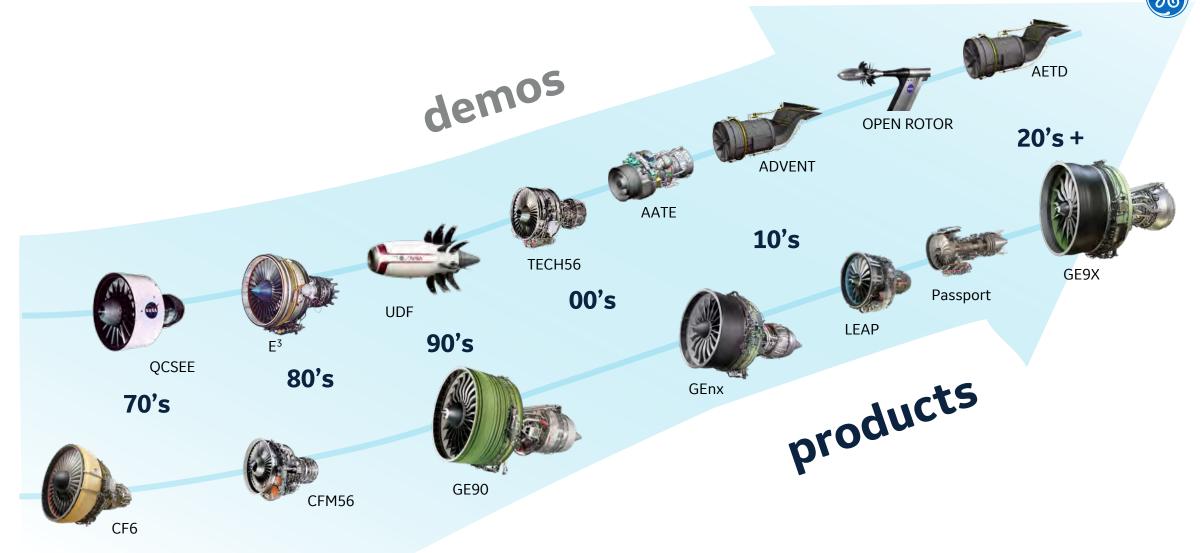


| FAA Goal Area                               | C      | CLEEN I Goal<br>2010 - 2015               | CLEEN II Goal<br>2015-2020 |                                |
|---------------------------------------------|--------|-------------------------------------------|----------------------------|--------------------------------|
| Noise<br>(cum below Stg 4)                  | -32 dB |                                           | -32 dB                     | Advanced Acoustics             |
| LTO NOx Emissions<br>(Below CAEP/6 @30 OPR) | -60%   | TAPS II                                   | -75%<br>(-70% rel CAEP/8)  | TAPS III                       |
| Aircraft Fuel Burn (including SAF)          | -33%   | Open Rotor FMS-ATM FMS engine integration | -40%                       | MESTANG I & II FMS SAF testing |










vs. GE90-115B

**GE9X (2021)** 

\*CFM is a 50/50 joint company of Safran Aircraft Engines and GE

#### **Demonstrators are Critical**



Demonstrators play a foundational role in development of new products

3

FAA CLEEN II Consortium May 2021 Approved for Public Use

# You have to prove it in flight.... FAA CLEEN II Consortium May 2021 Approved for Public Use

### GE9X certified on September 25th, 2020

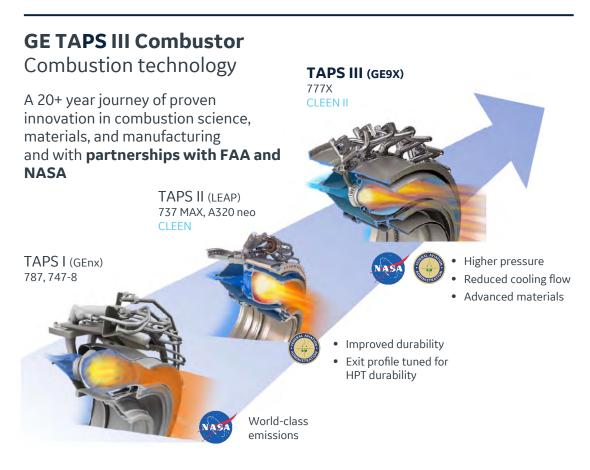
Delivering lower fuel burn, NOx emissions and noise

#### Lower fuel burn, NOx and noise

10%
LOWER
Specific fuel consumption

>55%
MARGIN
CAEP 8 NOX

105k
LBS. THRUST
multiple applications


versus GE90-115B

# Quietest GE Engine

in terms of pounds of thrust per decibel



#### **Further evolution in TAPS combustor**



# GE CLEEN II Technologies Overview



| CLEEN Technology Name      | Goal Impact       | Benefits and Application                        | Status    |
|----------------------------|-------------------|-------------------------------------------------|-----------|
| Advanced Acoustics         | Noise             | Up to 3 EPNdB cum with neutral fuel burn impact | Final     |
| MESTANG I                  | Fuel burn         | Up to 3% benefit for single-aisle aircraft      | Completed |
| MESTANG II                 | Fuel burn         | Additional fuel burn benefits 1-2%              | Active    |
| Sustainable Aviation Fuels | Alternative Fuels | Advance SAF approvals and evaluation tools      | Completed |
| FMS                        | Fuel burn         | Up to 4% benefit, 1.0% fleetwide average        | Completed |
| TAPS III -Technology       | Emissions         | 35% reduction relative to CAEP/8 (55 OPR)       | Completed |

FAA CLEEN II Consortium May 2021 Approved for Public Use 6



More Electric Systems and Technologies for Aircraft in the Next Generation (MESTANG II)

**Fabian Isaza** 

#### **MESTANG Technology Overview**



Next-gen Commercial Aircraft will need a "more-electric" power system to realize practical fuel savings and/or mission capability

#### **Project objectives:**

- Advance kV-Class DC primary power system feasibility through lab demonstration
- MW-Class Flight Altitude Generator
- Demonstration with MW-Class SiC converter (NASA)
- TRL6 demonstrator at GE EPIScenter and NASA's NEAT Facility
- Demonstrate fuel burn benefit (1-2%) over
   ± 270V MESTANG Power System

#### **Customer objectives:**

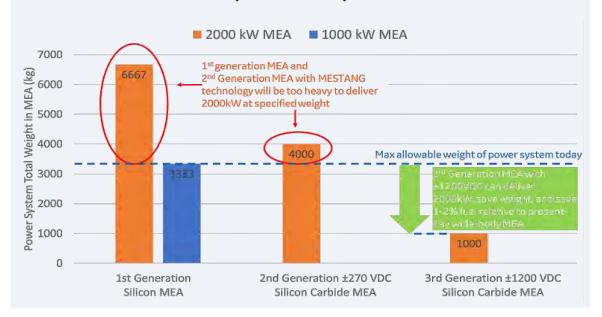
#### **NASA's NEAT Facility**



More Electric Systems and Technologies for Aircraft in the Next Generation (MESTANG), is an integrated aircraft power system designed to support future "more-electric" aircraft architectures that reduce fuel burn by up to 3% for single-aisle aircraft while improving performance at equivalent cost

#### kV/MW Class Generator Benefits




9

#### **System Weight**

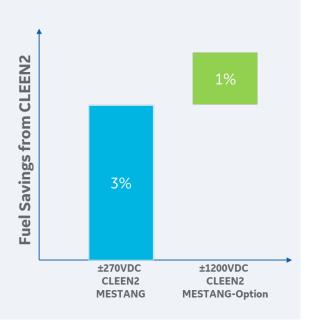
kV-Class components enable High Power Density:

- 6+ kW/kg Generators
- 10+ kW/kg Converters
- 2+ kW/kg Power Generation System

#### **B787 Widebody Power System Baseline**

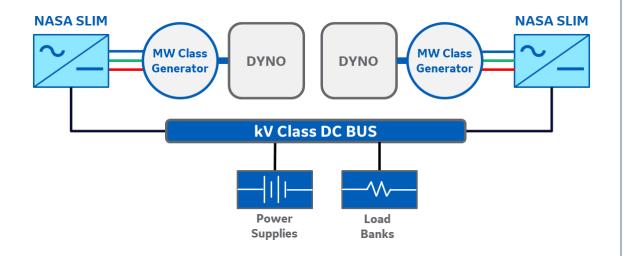


#### **Fuel Burn**


For Widebody aircraft, kV-Class components power density enable fuel burn benefits:

- 1-2% over MESTANG
- 2-3% over 1st Gen MEA

Assumes 4000nm mission


#### **Add'l Opportunities:**

- Bleed less
- Electric start
- ECS and actuation
- eTaxi
- System optimization



High Voltage Power System enables weight and system optimization

#### **Project Technology: kV/ MW Class Generator**



#### **Anticipated Benefits:**



- Up to 3% Fuel burn (Weight + Optimization)
- Higher power density...
  - >2kW/kg Power Generation System
- High efficiency power distribution
- Optimization of electrical system

#### **Objectives:**

- TRL6 for high voltage and high-power generator
- Specific Power system density >2 kW/kg
- Additional fuel burn benefits of 1-2%

#### **Work Statement:**

 Design and test of altitude flight high voltage and high-power generator

#### **Accomplishments/ Milestones:**

Test Facility preparation Complete
 Generator Assembly Complete

Safe return to test
 Complete

Installation & test readiness In progress

Test Initiation

#### June 2020

#### **Schedule:**

| 4Q '19   | 1H '20       | 2H '20          | 2021        |
|----------|--------------|-----------------|-------------|
| Design √ | Manufacture√ | Safe return to  | Component   |
| Complete | Gen Assembly | test activities | System Test |

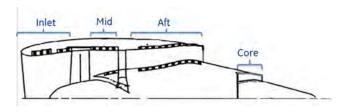


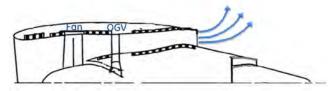
### **LPR Advanced Acoustics**

# **Tim Depuy**

#### Advanced Acoustics Project and CLEEN Goals




"Certifiable aircraft technology that reduces noise levels relative to the FAA's Stage 4 noise standard and/or reduces the noise contour area in absolute terms"


| FAA Goal Area                         |        | CLEEN I Goal<br>2010 - 2015               | CLEEN II Goal<br>2015-2020 |                                |
|---------------------------------------|--------|-------------------------------------------|----------------------------|--------------------------------|
| Noise<br>(cum below Stg 4)            | -32 dB |                                           | -32 dB                     | <u>Advanced Acoustics</u>      |
| LTO NOx Emissions<br>(Below CAEP/6)   | -60%   | TAPS II                                   | -75%<br>(-70% rel CAEP/8)  | TAPS III                       |
| Aircraft Fuel Burn<br>(including SAF) | -33%   | Open Rotor FMS-ATM FMS engine integration | -40%                       | MESTANG I & II FMS SAF testing |

Focused on reducing noise levels through development of Novel Liners and Fan Source Strength Reduction without impact to fuel burn and emissions

#### **Project Technology:**

#### **Novel Liners**





#### Fan Source Strength Reduction

#### **Anticipated Benefits:**



- Improved Acoustic liner benefit re: Single degree freedom Liners,
- Target ~ 2EPNdB Cum, Neutral Performance.
- Improved Fan Noise Source Strength Reduction re: LEAP
- Target ~ 1 EPNdB Cum, Neutral Performance.

#### **Objectives:**

- Develop Novel Acoustic Liners.
- Develop Fan Source Strength Reduction Concepts.

#### **Work Statement:**

Design, Develop, Fabricate and Test Novel Acoustic Liner.

Aeroacoustic Design and Testing of Fan noise source strength reduction concepts.

#### **Accomplishments/ Milestones:**

- Developed several novel liner cores
- Tested several liners with at NASA's Grazing Flow Impedance Tube facility
- Downselected to a specific liner design
- Completed large demo panel

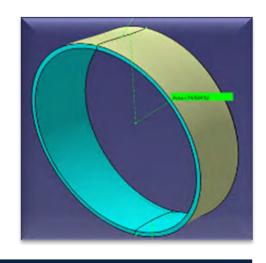
#### **Fan Noise Source Reduction**

- Completed Fan Source Strength Reduction design reviews
- Manufactured subscale hardware to validate acoustic benefit and performance.

### Project Schedule



| Technology                             | Earlier                                                           | FY 2018                                                                              | FY 2019                            | FY 2020                                       |
|----------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|
| 1. Novel Acoustic Liner Technology     | Concepts Developed and<br>Tested in Normal<br>Impedance Tube      | Grazing Flow Test Rig<br>Round 1                                                     | Grazing Flow Test Rig<br>Round 2   | Large scale samples                           |
| Test part geometry                     | <5" X 5"                                                          | 2.5" X 21"  NASA                                                                     | 2.5 X 21"                          |                                               |
| TRL/MRL                                |                                                                   | 3/3                                                                                  | 4/4                                | 4/4                                           |
| 2. Fan Noise Source Strength Reduction | Down Select and Identify<br>Source Strength Reduction<br>Concepts | Preliminary Design of<br>one Aeroacoustic fan<br>Source Strength<br>Reduction Design | Pretest Prediction & Final Reviews | Hardware Manufacture for Wind Tunnel UPS test |
| TRL                                    |                                                                   |                                                                                      | 3                                  | 3                                             |


FAA CLEEN II Consortium May 2021 Approved for Public Use 14

#### Summary and Next Steps



# **Novel Liners**

- Completed Grazing Flow tests
- Optimized a full-scale design based on test and model results
- Manufacturing a large sample sector panel



# Fan Source Strength Reduction

- All design reviews complete
- Subscale test hardware being manufactured

#### Thank you for your support...





In an unprecedented time, the CLEEN program is critical for sustained aviation growth

NextGen component technology maturation supports environmental protection

Technology demonstrators are foundational... leading to certification of products

GE is aligned with FAA's energy, emissions, and noise reduction goals

**GE** is looking forward to continuing a great partnership



# Building a world that works